Analysis of band structures for speaker-specific information in FM feature extraction
نویسندگان
چکیده
Frequency modulation (FM) features are typically extracted using a filterbank, usually based on an auditory frequency scale, however there is psychophysical evidence to suggest that this scale may not be optimal for extracting speakerspecific information. In this paper, speaker-specific information in FM features is analyzed as a function of the filterbank structure at the feature, model and classification stages. Scatter matrix based separation measures at the feature level and Kullback-Leibler distance based measures at the model level are used to analyze the discriminative contributions of the different bands. Then a series of speaker recognition experiments are performed to study how each band of the FM feature contributes to speaker recognition. A new filter bank structure is proposed that attempts to maximize the speaker-specific information in the FM feature for telephone data. Finally, the distribution of speaker-specific information is analyzed for wideband speech.
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملA Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملMulti-scale Fractal Dimension for Speaker Identification System
This paper looks at the extraction of nonlinear turbulence information of the speech signal using Multi-Scale Fractal Dimension (MFD) as the additional feature to the convectional MFCC features. The MFD is estimated using both Box-Counting and Minkowiski-Bouligand dimensions. The proposed framework uses this feature extraction together with sub-band based speaker modeling rather than the wide-b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009